
9/03/2015

1

Applying Static Analysis – Matias Madou and Daan Raman
SecAppDev, Leuven, Feb 27, 2015

SecAppDev 1

Matias
starts

Introduction
Who are we?

Matias Madou, Ph.D.

+32 (0) 495 25 49 78

mmadou@nviso.be

www.linkedin.com/in/matiasmadou/

At NVISO, I’m responsible for the software security
practice. Next to the client work, I also leads
NVISO’s product development efforts.

I’ve over a decade of software security experience.
I was fortunate to spend 7 years building the
leading static analysis solution as well as
investigate leading software security initiatives at
Fortune 100 companies through BSIMM. Currently,
I’m applying that knowledge to drastically improve
software security initiatives in a cost efficient way.

3SecAppDev

Daan Raman

+32 (0) 478 65 79 36

draman@nviso.be

be.linkedin.com/in/daanraman

I am a member a security consultant at NVISO, and
I specialize mostly in software security. I mainly use
my software engineering skills during penetration
tests and code reviews of mobile and desktop
applications.

I am additionally responsible for NVISO’s Research
& Development team, leading our technical
research with a current focus on application
security for mobile ecosystems and malware
analysis.

4SecAppDev

Daan
takes
over

Round of introductions

5SecAppDev

Welcome!

Our goal is to let you be successful at what you’re doing

• What company do you work for, what business unit do you work in?
• What are you working on? (Any static analysis?)
• What is your security background? (Trainings, hands-on, certification)
• What would you like to get out of this session?

Matias
takes
over

Secure Software Development
Why it matters

9/03/2015

2

Introduction
Any Big Software Security Issues?

2009: The biggest case of identity theft in
American history. 130 million credit card
numbers using an SQL injection attack.
Cost of breach: $140m.

2011: LulzSec hacks Sony Pictures
Reveals 1m passwords unguarded using SQL
injection attack. Sony did not learn from this
bad experience.

2012: The hacker group D33Ds stole 450,000
plain text login credentials from Yahoo!. The
breach was carried out by using a union-
based SQL injection attack.

SecAppDev 7

Introduction
Who’s job is software security?

Developers IT Security

Nobody?

Software Security is everybody’s job! It needs to be carried
out throughout the organization, from the bottom to the top.

SecAppDev 8

Introduction
Problems in code, so what?

Do you want to have more or less code next year?

More code, more potential problems!

SecAppDev 9

Introduction
Well, we have Security Software (same as Software Security, right?)

Security Software Software Security

SDLC

Req. &
Design

Develop
& review

TestDeploy

Production

Secure Design

Secure Coding

Dynamic Testing
Sanity Check

Watch App

SecAppDev 10

Introduction
OK, what’s the impact of such a program?

0

200

400

600

800

1000

1200

0

10

20

30

40

50

60

 NT 3.1
(1993)

 NT 3.5
(1994)

 NT 4.0
(1995)

2000
(2000)

 XP
(2001)

 Server
2003
(2003)

 Vista
(2006)

7 (2009) 8 (2012)

Windows LOC vs. #CVE

LOC #CVE

Gates memo (2002):
Trustworthy Computing.
Microsoft SDL

SecAppDev 11

Introduction
Find security problems as fast as possible in the SDLC.

SecAppDev 12

9/03/2015

3

Why audit code?

Why audit code?

14SecAppDev

Why audit code?

15SecAppDev

Bad decisions can have big
consequences!

The SDLC

16SecAppDev

When things go wrong

The SDLC

17SecAppDev

When things go wrong

On Saturday, Nov. 30, the hackers had set their traps
and had just one thing to do before starting the

attack: plan the data’s escape route.

As they uploaded exfiltration malware to move stolen
credit card numbers—first to staging points spread
around the U.S. to cover their tracks, then into their

computers in Russia—FireEye spotted them.
Bangalore got an alert and flagged the security team

in Minneapolis. And then …

Nothing happened.
Source: http://www.businessweek.com/articles/2014-03-13/target-missed-alarms-

in-epic-hack-of-credit-card-data

The Secure Development Life Cycle (SDLC)

9/03/2015

4

The SDLC
Secure Development Life Cycle

19SecAppDev

SDLC

1. Req. &
Design

2.
Develop &

review

3.

Test
4. Deploy

5.

Maintain

In an ideal scenario, security is an integrated part in each

phase of the Software Development Life Cycle.

The SDLC
Secure Development Life Cycle

20SecAppDev

... the reality (Functionality over Security)

Source: CISSP All-In-One Exam Guide 6th Edition, Shon Harris

A realistic goal: developers &

architects find a happy

medium between functional

and security requirements

A Secure Development Life
Cycle is about building

security into the software
development life cycle.

The SDLC

21SecAppDev

Why you need a Secure Development Life Cycle

The earlier (security)
issues are identified,

the lower the
remediation cost.

The relative cost of fixing defects in
various stages of the SDLC.

Source: The economics of testing (Rice Consulting)
The Software Development Life Cycle (SDLC)

SDLC

1. Req.
&

Design

2.
Develop
& review

3.

Test
4.

Deploy

5.

Maintain

The consequences of a security
breach can be very expensive! Can

you come up with examples?

The SDLC
Implementation

22SecAppDev

Comprehensive Lightweight Application Security
Process (CLASP, OWASP Project)

Touch-Point Model
(Gary McGraw)

Microsoft Secure Software Development Life Cycle (SDL)

23SecAppDev

The SDLC
Implementation

Implement and use Secure Coding Standards
• Ban “dangerous” functions

exec,passthru,shell_exec,system,proc_open,popen,curl_exec,curl_multi_exec,parse
_ini_file,show_source

Perform reviews
• Manual source code reviews (ie. peer reviews)
• Automated static analysis

Bug vs. Flaw

Daan
takes
over

9/03/2015

5

Defects: Bugs vs. Flaws
Definition

25SecAppDev

What do the terms “bug” and “flaw” mean to you?

Bugs and Features by Iris-hime

Defects: Bugs vs. Flaws
Definition

26SecAppDev

Defect
Can be both implementation vulnerabilities and design vulnerabilities

Bugs Flaws

A bug is an implementation-
level software problem

A flaw is instantiated in software
code, but is far more present at

the design level.

27SecAppDev

Simple mistake. An error. A design problem.

Bugs Flaws

Bugs vs. Flaws
Applied to code

Bugs vs. Flaws
(in) Famous examples

The Heartbleed bug: Microsoft Bob:
Pardon me: Have you forgotten

your password?
Type your password here: …

28SecAppDev

Bugs Flaws

The first computer bug
(in) Famous examples

29SecAppDev

1947
Mark II Relay Calculator

Moth trapped in a relay

Moth was removed and
a note was made in the

log

“First actual case of bug
being found”

Bugs vs. Flaws
(in) Famous examples

30SecAppDev

Ariane 5 launch failure
The launch, which took place on Tuesday, 4
June 1996, ended in failure due to an error in
the software caused by assertions having been
turned off, which in turn caused inadequate
protection from integer overflow.

This resulted in the rocket veering off its flight
path 37 seconds after launch, beginning to
disintegrate under high aerodynamic forces, and
finally self-destructing by its automated flight
termination system. The failure has become
known as one of the most infamous and
expensive software bugs in history.

The failure resulted in a loss of more than US
$370 million.

9/03/2015

6

Bugs vs. Flaws
(in) Famous examples

31SecAppDev

Bugs vs. Flaws
Applied to Secure Development Life Cycle

32SecAppDev

SDLC

1. Req. &
Design

2.
Develop &

review

3.

Test
4. Deploy

5.

Maintain

Where do we find mainly bugs? Where do we find mainly flaws?

Bugs vs Flaws
Applied to Secure Development Life Cycle

33SecAppDev

SDLC

1. Req. &
Design

2.
Develop &

review

3.

Test
4. Deploy

5.

Maintain

Where do we find mainly bugs? Where do we find mainly flaws?

Architectural Risk analysis

Source Code Review

Threat Modelling
Penetration testing

Bugs vs Flaws
Quiz…

34SecAppDev

“bug” or “flaw”

Bugs vs Flaws
Quiz…

35SecAppDev

“bug” or “flaw”

Bugs vs Flaws
Quiz…

36SecAppDev

“bug” or “flaw”

9/03/2015

7

Bugs vs Flaws
Quiz…

37SecAppDev

“bug” or “flaw”

Application Security Testing

Introduction

39SecAppDev

Application Security Testing
Different approaches

During Application Security Testing, we are going to analyze the
source code and/or the compiled version of the code in order to

identify potential security defects.

Web application

Static Application
Security Testing (SAST)

Dynamic Application
Security Testing (DAST)

40SecAppDev

Application Security Testing
Static Application Security Testing

if (($fQ=strpos($Fid,'"'))!==false) $Fname

= sanitize_title_with_dashes(substr($Fid,

$fQ+1, strpos($Fid,'"',$fQ+1)-$fQ-1));

41SecAppDev

Application Security Testing
Combining Static and Dynamic Analysis

To get the most out of Application Security Testing, we will often
combine both static and dynamic techniques.

Static Application
Security Testing

Dynamic Application
Security Testing

Web application

42SecAppDev

Application Security Testing
Comparison of techniques

Static Analysis Dynamic Analysis

Manual
techniques

Read through and review
code manually

Step through code using a
debugger

Automated
techniques

9/03/2015

8

43SecAppDev

Application Security Testing
Support in your favorite IDE

Most modern IDE’s support built-in static code analysis

44SecAppDev

Application Security Testing
Support in your favorite IDE

Demonstration

45SecAppDev

Application Security Testing
Stand-alone Static Application Security Testing tools

IBM AppScan

HP Fortify (audit workbench)

46SecAppDev

Application Security Testing
Manual and Automated techniques

Which techniques are most suitable in order to detect bugs & flaws?

Bugs Flaws

Simple mistake. An error. Design problems.

47SecAppDev

Application Security Testing
Manual and Automated techniques

Mainly automated source code
review techniques but also manual

Mainly manual architectural risk
analysis

Flaws

Simple mistake. An error. Design problems.

Bugs

Application Security Testing
Choice in solutions: What does Gartner say?

Leaders: HP, IBM, Veracode and
WhiteHat Security:

Offer at least SAST and DAST
IAST (Interactive Application
Security Testing) and RASP
(Runtime) are a differentiator

48SecAppDev

9/03/2015

9

Static Analysis

Theory

Matias
takes
over

Static Analysis Theory
10.000 feet view

A 10.000 feet view of static analysis

50SecAppDev

Static Analysis Theory
Model

Step 1: Translate phase: Translate source code to some language
independent intermediate language

51SecAppDev

Static Analysis Theory
Scanning

Step 2: Scan phase: Apply analysis on top of the generic intermediate
language

52SecAppDev

Rules
(language specific)

Static Analysis Theory
Theory: translation

Build up model. Do analysis on model

53SecAppDev

Results:
1) …
2) …
3) …
4) …

Static Analysis Theory
Theory: translation

Missing library files (end points)
(Source code scanning does not decompile, but extracts key
information!!)

Duplicate (but different code)

54SecAppDev

Old/Login.java Latest/Login.java

9/03/2015

10

Static Analysis Theory
Theory: phase 2: scanning

Build up model. Do analysis on model

55SecAppDev

Language support:
- Java
- .NET
- PHP
- …

Packages:
- Hibernate
- Struts
- …

Package XYZ

Hibernate

Static Analysis Theory
Theory: phase 2: scanning

Build up model. Do analysis on model

56SecAppDev

Language support:
- Java
- .NET
- PHP
- …

Packages:
- Hibernate
- Struts
- …

Package XYZ

Hibernate

Limitations of static analysis

Daan
takes
over

False positives vs. False negatives

58SecAppDev

Static analysis says you
don‘t have this bug

Static analysis says
you have this bug

... and you don‘t
have this bug

… and you do
have this bug

True Negatives False Positives

False Negatives True Positives

False positives vs. False negatives

59SecAppDev

… and you do
have this bug

True Negatives False Positives

False Negatives True Positives

Wanted results

Unwanted
results

Static analysis says you
don‘t have this bug

Static analysis says
you have this bug

The tool is reporting
10.000 instances of
XSS! We don’t care

about these!

When starting with static analysis…

60SecAppDev

?? False Negatives ??
True Positives

False Positives

No clue about false negatives

Thinks you have an overwhelming amount of false positives
(and that may be true)

9/03/2015

11

What you would like to achieve…

61SecAppDev

False
Positives

False
Negatives

True Positives

Reduce the amount of
false positives to a
manageable amount

Understand where
false negatives may be

… but what about the true positives?

62SecAppDev

False
Positives

False
Negatives

True Positives

How to manage the amount of
true positives?

Where do false positives and negatives come from?
Example: Bug/Product does not really work with the framework

63SecAppDev

The static analysis tool does not

know Struts…

It ignores the “actionerror escape”

attribute – false negative!

Triaging

Matias
takes
over

Triaging
Going through issues

Good part: The bulk of
the work should be

done by fine-tuning the
scan with custom rules

Bad part: they weeded
out a ton of trivial

issues, the hard part is
left for you!

65SecAppDev

Triaging
What to avoid

Can it be
exploited?

Find exploit
Argue about
the exploit,
severity, …

66SecAppDev

9/03/2015

12

Triaging
High-level overview

Issue
Read the
evidence

Understand
the problem

category

See if the
evidence

supports the
problem
category

Take
appropriate

action

67SecAppDev

Static Analysis Theory

Static analysis theory
Analyzers

Different analyzers find different issues:
• Structural matching
• Taint tracking
• Control flow analysis
• Configuration file analysis
• Content analyzers (html files)
• …

69SecAppDev

Static analysis theory
Analyzers

Why do we need to understand the different analyzers:
• Understand why the tool is generating an issue

• Discover false positives and false negatives

• Feedback loop to solution improvements (customization)

70SecAppDev

Structural matching
Grep++

What other categories can be used to grep?
(Think about manual code review)

71SecAppDev

Taint tracking
Most important analyzer

High level overview of taint tracking (what the dataflow analyzer does)

72SecAppDev

Parameter1= Request.getParameter(“the_first_parameter”);

Other_variable= CopyData(Parameter1);

CommandLine.execute(Other_variable)

9/03/2015

13

Taint tracking
Most important analyzer

High level overview of taint tracking (what the dataflow analyzer does)

73SecAppDev

Parameter1= Request.getParameter(“the_first_parameter”);

Other_variable= CopyData(Parameter1);

CommandLine.execute(Other_variable)

Source of taint

Passthrough

Sink

Taint tracking
Most important analyzer

High level overview of taint tracking (what the dataflow analyzer does)

74SecAppDev

Parameter1= Request.getParameter(“the_first_parameter”);

Other_variable= CopyData(Parameter1);

CommandLine.execute(Other_variable)

Source of taint

Passthrough

Sink

Taint tracking
Most important analyzer

Source rule:
Q: Where can data enter our solution? How can data enter the solution?

(White board)

75SecAppDev

Taint tracking
Most important analyzer

High level overview of taint tracking (what the dataflow analyzer does)

76SecAppDev

Parameter1= Request.getParameter(“the_first_parameter”);

Other_variable= CopyData(Parameter1);

CommandLine.execute(Other_variable)

Source of taint

Passthrough

Sink

Taint tracking
Most important analyzer

Passthrough rule:
Q: How can data move through the solution?

(White board)

77SecAppDev

Taint tracking
Most important analyzer

High level overview of taint tracking (what the dataflow analyzer does)

78SecAppDev

Parameter1= Request.getParameter(“the_first_parameter”);

Other_variable= CopyData(Parameter1);

CommandLine.execute(Other_variable)

Source of taint

Passthrough

Sink

9/03/2015

14

Inform Developers

Bugs Flow
Inform Developers

How do the developers get informed?

80SecAppDev

Issue

Problem

?

Audit

Bugs Flow
Inform Developers

How do the developers get informed?

81SecAppDev

Issue

Problem

Audit Q&A
Thank you!

mmadou@nviso.be

draman@nviso.be

@mmadou / @daanraman

@NVISO_BE

www.nviso.be

Q

