[VISO

Applying Static Analysis — Matias Madou and Daan Raman
SecAppDev, Leuven, Feb 27, 2015

SecAppDev

way.

Matias Madou, Ph.D.

B 320495254978
] mmadou@nviso.be

B v linkedin comiin/matiasmadou/

= SecAppDev

Round of introductions

Welcome!

Ourgoal s to letyou be successful at what you're doing

What company do you work for, what business unit do you work in?
What are you working on? (Any static analysis?)

What is your security background? (Trainings, hands-on, certification)
What would you like to get out of this session?

SecAppDev

Who are we?

ultant at NVISO, and

oftware security. | mainly use
ering skills during penetration
and desktop

our technical
on application
and malware

Daan Raman

H +32(0) 478 65 79 36
E] draman@nviso.be
B e linkedin.comiin/daanraman

SecAppDev

Why it matters

9/03/2015

Introduction
Any Big Software Security Issues?

2009: The biggest case of identity theft in
American history. 130 million credit card
numbers using an SQL injection attack.
Cost of breach: $140m.

2011: LulzSec hacks Sony Pictures

Reveals 1m passwords unguarded using SQL
injection attack. Sony did not learn from this
bad experience.

£ AL HORTE AT

2012: The hacker group D33Ds stole 450,000
plain textlogin credentials from Yahoo!. The
breach was carried out by using a union-
based SQL injection attack.

Introduction

Problems in code, so what?

e s

Do you want to have more or less code next year?

e

|
:

| R
- . | "
- I I l ' I l | | | | I More code, more potential problems!

g SecAppDev

Introduction

OK, what's the impact of such a program?

Windows LOC vs. #CVE

60 ' 1200

50 l 1000

40 d 800

30 | 600

20 ; 400

10 % 200
i

NT3.1 NT35 NT40 2000 P Server Vista 7(2009)8(2012)
(1993) (1994) (1995) (2000) (2001) 2003 (2006)
I (2003)

—Loc: —HCVE
! Gates memo (2002):

______ - Trustworthy Computing.
Microsoft SDL

9/03/2015

Introduction
Who's job s software security?

ol), 9 2

Developers Oo' IT Security

Nobody?

Software Security is everybody'’s job! It needs to be carried
out throughout the organization, from the bottom to the top.

SecAppDev 8

Introduction

Well, we have Security Software (same as Software Security, right?)

Software Security
Req. &
Design
Develop
Production Develop
Deploy Test
L SecAppDev 10
Introduction
Find security problems as fast as possible in the SDLC
e
T SecAppDev 12

9/03/2015

Why audit code? ‘

T SecAppDev 14

Why audit code? The SDLC
When things go wrong

& HE g
[E—
Bad decisions can have big Missed Alarms and 40 Million Stolen Credit
consequences! Card Numbers: How Target Blew It

A S W e P i | s et e A St T B

T SecAppDev 15 T SecAppDev 16

The SDLC
When things go wrong

On Saturday, Nov. 30, the hackers had set their traps
and had just one thing to do before starting the
attack: plan the data’s escape route.

As they uploaded exfiltration malware to move stolen
credit card numbers—first to staging points spread
around the U.S. to cover their tracks, then into their

computers in Russia—FireEye spotted them.

Bangalore got an alert and flagged the security team

in Minneapolis. And then ...

Nothing happened.
Source: http://www.businessweek.com/articles/2014-03-13/target-missed-alarms-
in-epic-hack-of-credit-card-data

'-.I_-l_;"' SecAppDev 17

The SDLC

Secure Development Life Cycle

1. Req. &
Design

5. 2.
o Develop &
Maintain evion

4. Deploy

In an ideal scenario, security is an integrated part in each
phase of the Software Development Life Cycle.

SecAppDev

The SDLC

Why you need a Secure Development Life Cycle

1. Req The relative cost of fixing defects in
e various stages of the SDLC.
esign

2 ; .
— Develop The earlier (security)
sy issues are identified,
the lower the
B remediation cost.
4
Deploy Test

The Software Development Life Cycle (SDLC)

The consequences of a security

breach can be very expensive! Can
you come up with examples?

TR

SecAppDev

The SDLC

Implementation

Implement and use Secure Coding Standards
» Ban “dangerous” functions

exec,passthru,shell_exec,system,proc_open,popen,curl_exec,curl_multi_exec,parse
_ini_file,show_source

T
I e
[TR 1 o i

Perform reviews

Manual source code reviews (ie. peer reviews)
+ Automated static analysis

SET SecAppDev

The SDLC

Secure Development Life Cycle

9/03/2015

... the reality (Functionality over Security)

A realistic goal: developers &
architects find a happy
medium between functional
and security requirements

A Secure Development Life

Cycle is about building
security into the software
development life cycle.

SecAppDev

The SDLC

Implementation

Comprehensive Lightweight Application Security
Process (CLASP, OWASP Project)

Touch-Point Model
(Gary McGraw)

Microsoft Secure Software Development Life Cycle (SDL)

TRIET

SecAppDev

Defects: Bugs vs. Flaws

Definition

What do the terms “bug” and “flaw” mean to you? !

BUG FEATURE BY DESIGN

Bugs and Features by lris-hime.

|3 SecAppDev 25

Bugs vs. Flaws
Applied to code

Bugs ‘ ‘ Flaws ‘

Simple mistake. An error.

A design problem.

Rl SecAppDev 27

The first computer bug

(in) Famous examples

Al 1947

e ede ey Mark Il Relay Calculator
FETS g e
Wy e ome E4REETSY!
Bk WY b eavesd
o~ PR
Pda bl = e

-

Moth trapped in a relay

bl

4 K Y Moth was removed and
e ¥ v‘-p‘p“) a note was made in the
BRAR sk & ¥ R log
1544 fan Vin
.3‘ ‘.‘\. P W “First actual case of bug

being found”

Frat actes
& b

v | il b

Lrorast | lm‘ L—-‘ (-«L

= SecAppDev 29

9/03/2015

Defects: Bugs vs. Flaws

Definition

Defect

Can be both implementation vulnerabilities and design vulnerabilities

A bug is an implementation-
level software problem

A flaw is instantiated in software
code, but is far more present at
the design level.

L = SecAppDev 26

Bugs vs. Flaws

(in) Famous examples

‘ Bugs ‘ ‘ Flaws

The Heartbleed bug: Microsoft Bob:
Pardon me: Have you forgotten

your password?

Type your password here: ...

e w Leapeny
Jirky Munaed pur W MM e

8] = SecAppDev 28

Bugs vs. Flaws

(in) Famous examples

Ariane 5 launch failure

The launch, which took place on Tuesday, 4
June 1996, ended in failure due to an error in
the software caused by assertions having been
turned off, which in turn caused inadequate
protection from integer overflow.

This resulted in the rocket veering off its flight
path 37 seconds after launch, beginning to
disintegrate under high aerodynamic forces, and
finally self-destructing by its automated flight
termination system. The failure has become
known as one of the most infamous and
expensive software bugs in history.

The failure resulted in a loss of more than US
$370 million.

".l_- =" SecAppDev 30

Bugs vs. Flaws
(in) Famous examples

1l by b e e e
LA

I e
e
Tk | momensd rviod sebveiy bow o e
e td b o 1w X B

AN T TN
PN REER ML B o W
WA TV I TV A

PN RANET ML B . M0
-
LU L TRy
DR RC SR IR R

-
2ot e N b A emd by ame

sovwwind bt 1AM ot wient erioy
AR L '

Famz t mocw e TP LA (R S A L L e
abaodacare. o 0 GO0 AL bt
——cct

SecAppDev
Bugs vs Flaws
Applied to Secure Development Life Cycle
1LReq 8 Architectural Risk analysis
Design

5. 2.
o Develop &
Maintain evion

4. Deploy e

Threat Modelling
Where do we find mainly bugs? Where do we find mainly flaws?

o SecAppDev

Bugs vs Flaws
Quiz

Source Code Review

Penetration testing

ubugn or “flaw”

SecAppDev

9/03/2015

Bugs vs. Flaws
Applied to Secure Development Life Cycle

1. Req. &
Design

6

2.
Develop &
Maintain

review

4. Deploy o

Where do we find mainly bugs? Where do we find mainly flaws?

SecAppDev

Bugs vs Flaws
Quiz...

“bug” or “flaw”

i i SecAppDev M

Bugs vs Flaws
Quiz

"bug” or “flaw”

SecAppDev

9/03/2015

Bugs vs Flaws

Quiz..
“bug” or “flaw”
[Ewo:d zatn))
|
her Duftera}20):
Thne ftere 116l
PEINTELWhAT (A your nanerin®):
NER U AT ;
wsrepy(tritfard, Buffard):
rat
I
R
—h T SecAppDev £
Application Security Testing Application Security Testing
Different approaches Static Application Security Testing
During Application Security Testing, we are going to analyze the
source code and/or the compiled version of the code in order to
identify potential security defects.
- - -
O,
5 %,
R & .
° 00/5@(" =
& %, %, >
900 Web application & ©
$£0+1, strpos($Fid,'"",$£0+1)-$£0-1));
Static Application Dynamic Application LML NI N
Security Testing (SAST) Security Testing (DAST) v —_tei_bi_pee
- R 2:. SecAppDev 39 - W :::. SecAppDev 40
Application Security Testing Application Security Testing
Combining Static and Dynamic Analysis Comparison of techniques
To get the most out of Application Security Testing, we will often Static Analysis Dynamic Analysis
combine both static and dynamic techniques. -
Automated
. L techniques
v
pphmum -I
Manual e
Static Application Dynamic Application techniques Step through code usi
S ity Testil 5 i tep through code using a
ecurity Testing Security Testing e
AT SecAppDev] T SecAppDev o

Application Security Testing

Support in your favorite IDE

Most modern IDE’s support built-in static code analysis

-y sy)
e

o o oA e e
e w4 ek
1 rhm o et e
__:.:‘ hove’

|3 SecAppDev 43

Application Security Testing

Stand-alone Static Application Security Testing tools

HP Fortify (audit workbench)

Rl SecAppDev 45

Application Security Testing

Manual and Automated techniques

Flaws

Bugs ‘

Simple mistake. An error.

Design problems.

NP4

Mainly manual architectural risk

Mainly automated source code
review techniques but also manual analysis

SET SecAppDev a7

9/03/2015

Application Security Testing

Support in your favorite IDE

Demonstration

e SecAppDev 44

Application Security Testing

Manual and Automated techniques

Bugs ‘ ‘ Flaws

Simple mistake. An error. Design problems.

g ‘ Which techniques are most suitable in order to detect bugs & flaws? ‘

= e

ik SecAppDev m

Application Security Testing

Choice in solutions: What does Gartner say?

Leaders: HP, IBM, Veracode and

WhiteHat Security:

F Offer at least SAST and DAST

F IAST (Interactive Application
Security Testing) and RASP

-
(Runtime) are a differentiator " N
B 1 At
-
® iy "
® nes
® e
-
'
———

= SecAppDev 48

9/03/2015

Static Analysis Theory

10.000 feet view

A 10.000 feet view of static analysis

T SecAppDev 50
Static Analysis Theory Static Analysis Theory
Model Scanning
F Step 1: Translate phase: Translate source code to some language F Step 2: Scan phase: Apply analysis on top of the generic intermediate
language

independent intermediate language

Trasictise (e -
SrAion vl - il
"

1 .

Sd 1

O

T rfut Tair < daramt & w8 whiamtion snmmr)|
} n e iecercisn) | # (rwet: S St witF e w 1o Rules
e o (language specific)
T SecAppDev 51 T SecAppDev 52
Static Analysis Theory Static Analysis Theory
Theory: translation

Theory: translation
F Missing library files (end points)
(Source code scanning does not decompile, but extracts key

information!!)

Build up model. Do analysis on model

=)

Nom
N

o
A =

F Duplicate (but different code)

Old/Login.java Latest/Login.java

SecAppDev

LT

- SecAppDev

VT

Static Analysis Theory

Theory: phase 2: scanning

O
N
e e,

YR I
ﬁl Hibernate
mai
Package XYZ
SecAppDev

False positives vs. False negatives

The tool is reporting
10.000 instances of
XSS! We don't care

Static analysis says you
don't have this bug

Language support:
- Java
- NET
- PHP

Packages: ———————» ‘?:‘
- Hibernate
- Struts

Static analysis says
you have this bug

about these!

True Negatives

... and you do
have this bug

ko SecAppDev

False Positives

Wanted results

Unwanted
results

Static Analysis Theory

Theory: phase 2: scanning

Build up model. Do analysis on model

-
@ @

' h L'_‘L!
" Hibemate
oy
Package XYZ

SecAppDev

False positives vs. False negatives

Static analysis says you
don't have this bug

9/03/2015

Language support:
- Java
- NET
- PHP

Packages: ——————» E= "
- Hibernate
- Struts

Static analysis says
you have this bug

...and you don't
have this bug

True Negatives

... and you do
have this bug

SecAppDev

When starting with static analysis...

False Positives
Y
S

Thinks you have an overwhelming amount of false positives

(and that may be true)

X
\

No clue about false negatives

X
\
\

?? False Negatives ??

T SecAppDev

False Positives

10

9/03/2015

What you would like to achieve... ‘ ... but what about the true positives? ‘

Reduce the amount of

false positives to a tlow to r):.anage the amount of
False manageable amount rue positives? Folee
Positives

Positives
Understand where

false negatives may be

S SecAppDev

R SecAppDev

Where do false positives and negatives come from?
Example: Bug/Product does not really work with the framework

o o The static analysis tool does not
K1 sheoy=ATy 4%,
ol TR - know Struts...

LI R Vo l”
Sadl Rt AR L R S

It ignores the “actionerror escape” 5
attribute - false negative! |

Aoanifom eilowTineT se, i et e ATt

4 Ao . 1

. AT Y, ST ATy Y
oty BT AR T AT PR

L SecAppDev

Triaging Triaging
Going through issues What to avoid
Good part: The bulk of {f-?‘
the work should be L,ﬁ o
done by fine-tuning the "

scan with custom rules

Can it be Argue about

exploited? Find exploit | the exploit,

Bad part: they weeded severity, ...

out a ton of trivial
issues, the hard part is
left for you!

T SecAppDev

T SecAppDev

11

Triaging

High-level overview

See if the Take
Understand evidence ake
Readihd the problem supports the appropriate
GUEENES category problem action
category
SecAppDev 67
Static analysis theory

Analyzers

Different analyzers find different issues:
« Structural matching

+ Taint tracking

+ Control flow analysis

» Configuration file analysis

» Content analyzers (html files)

9/03/2015

Static analysis theory

Analyzers

T SecAppDev

Structural matching

Grep++

Why do we need to understand the different analyzers:
* Understand why the tool is generating an issue

« Discover false positives and false negatives

« Feedback loop to solution improvements (customization)

F What other categories can be used to grep?
(Think about manual code review)

SecAppDev 70

Taint tracking

Most important analyzer

T SecAppDev

High level overview of taint tracking (what the dataflow analyzer does)

Parameterl= Request.getParameter(“the_first_parameter”);

Other_variable= CopyData(Parameterl);

CommandLine.execute (Other_variable

SecAppDev 72

12

Taint tracking

Most important analyzer

High level overview of taint tracking (what the dataflow analyzer does)

— T

Parameterl= Request.getParameter(“the_first_parameter”);

Source of taint

Passthrough

Other_variable= CopyData(Parameterl);

~~——— CommandLine.execute(Other_variabl Slnk

SecAppDev 73

Taint tracking

Most important analyzer

Source rule:
F Q: Where can data enter our solution? How can data enter the solution?
(White board)

SecAppDev 75

Taint tracking

Most important analyzer

Passthrough rule:
F Q: How can data move through the solution?

(White board)

T SecAppDev 77

9/03/2015

Taint tracking

Most important analyzer

High level overview of taint tracking (what the dataflow analyzer does)

—

Parameterl= Request.getParameter(“the_first_parameter”);

Source of taint

Passthrough
Other_variable= CopyData(Parameterl);
l\)cammandLine.execute(other_variabl Slnk
7~\/\/\/\J777
= SecAppDev 74

Taint tracking

Most important analyzer

High level overview of taint tracking (what the dataflow analyzer does)

—

Parameterl= Request.getParameter(“the_first_parameter”);

Source of taint

Passthrough
Other_variable= CopyData(Parameterl);
l\)cammandLine.execute(other‘_var‘jabl Slnk
7~\/\/\/\J777
= SecAppDev 76
Taint tracking

Most important analyzer

High level overview of taint tracking (what the dataflow analyzer does)

T

Parameterl= Request.getParameter(“the_first_parameter”);

Source of taint

Passthrough

Other_variable= CopyData(Parameterl);

~———— CommandLine.execute(Other_variabl

>W7 Sink

T SecAppDev 78

13

Inform Developer

Bugs Flow

Inform Developers

F How do the developers get informed?

Audit

T SecAppDev 81

mmado

dramant

@mmadou daanraman

@NVISO_BE

nviso.be

Bugs Flow

Inform Developers

9/03/2015

F How do the developers get informed?

Audit

TRIET

SecAppDev

Thank you!

14

